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First, a word about Brute Force
Brute Force gets a bad rep. The name 
doesn’t help.

Its nickname is better: Exhaustive Search.

It is, by no means the worst option.

Example: Set of cities and toll roads. Find 
the closed route (cycle) that passes 
through all cities and that has the least 
cost.



First, a word about Brute Force
The issue is: how “exhausted” are you 
willing to get?



Heuristics
An alternative to Exhaustive Search



What is a Heuristic?
A Heuristic or heuristic function is a rule or set of rules by which a suitable 
approximation to a solution may be achieved in a reasonable amount of time.

Synonyms and subtypes of heuristics: 

● Informed Search
● Educated Guess
● Common Sense
● Educated Risk 
● Conventional Wisdom
● Rule of Thumb: this might NOT be an appropriate term (look it up)



Why use a Heuristic?
Heuristics are used when a general rule cannot be devised because of lack of 
information, the difficulty of considering all cases (complexity), or the fact that 
approximate solutions are sufficient.

After all, you don’t actually compute optimum packing arrangements when going on a 
trip, do you?. 

You just arrange stuff in what seems like a suitable manner until you pack everything or 
resort to pushing.



Examples of “Popular” Heuristics
Heuristics may be developed incrementally through the use of trial and error 
or the accumulation of years of “lore” or expertise.

● Informed Search: Which street to take if you are going from A to B and you don’t 
know the exact route?

● Educated Guess: If you meet a shy person in a building where only math and 
business majors take classes, what is the major of the shy person? (sure?)

● Common Sense: Look both sides when crossing the (any) street.

● Educated Risk: If you arrive at a bus stop and there is no bus. You could walk 2 miles 
or wait. Do you wait? How long?

● Conventional Wisdom: On time is ± 5 minutes



How do you define a Heuristic?
Informally, your gut feeling is informed by previous experience (your own or 
learned). 

Examples:

If you are lost, look for a known landmark and orient yourself.

Does it always work? NO! Vs



A more “CS” definition
When searching for solutions composed of multiple options, a heuristic is a 
rule or function that chooses the next reasonable option but not necessarily 
the best one.

Example:

● Simple Chess AI based on a sequence of prioritized rules: 
1. If you can mate, mate.
2. If next move your opponent can mate you, defend against that.
3. If you can take a piece of more value than your best threatened one, do so. 
4. If a piece is threatened, move it to safety.
5. Move to a square that is not threatened.
6. Move to a square that is defended.

Conditions

Win/Lose

Attack/Defend

Move



1. If you can mate, mate.
2. If next move your opponent can mate you, 

defend against that.
3. If you can take a piece of more value than 

your best threatened one, do so. 
4. If a piece is threatened, move it to safety.
5. Move to a square that is not threatened.
6. Move to a square that is defended.

Using our Rules
What is the next best move?
Is it the absolute best move?

King Queen Rook Bishop Knight Pawn

∞ 9 5 3 3 1



Heuristics in Computer Science
Rules or functions that return values which help rank alternatives with respect to 
their potential contribution to the solution of the problem.

● Example 1: 0/1-Knapsack. Packing N different objects with weights: 
W1,W2, …,WN and values V1,V2, …,VN in a limited space. 

● Objective: Maximize the total profit of packed objects.
○ Heuristic 1: Sort objects by weight and add objects from largest to smallest which 

still fit.
○ Heuristic 2: Sort objects by Value and add most to least valuable which still fit.
○ Heuristic 3: You come up with a better one!



Exercise 1
0/1 Knapsack

Come up with your own rule and 
compute the best solution.

Max Capacity: 10
W V
3 30
7 50
4 45
8 10
2 35



Exercise 1b
0/1 Knapsack

How about this case?
Did your Heuristic win both 

times?

Max Capacity: 10
W V
4 10
5 50
3 20



Watch out, though!
0/1 Knapsack

Is the best-ratio heuristic 
optimal?

Is the optimal result perfect?

MaxW: 2078/7534 
MinW: 5891/7534
MaxV: 7303/7534
MaxR: 7503/7534
Optimal: 7525/7534



Ad-Hoc Rules as Heuristics
One possible way of formally defining a heuristic is to have a set of ad-hoc 
rules for a problem.

Example: In a Maze, what rule could you follow to get out?

● Possible rule: place your left hand on a wall and keep going until you get 
out. 

○ This could be called a “wall following” method, or 
○ a “left-turn always method”.

While this approach might work for some mazes, it would not apply to other 
problems like the 0/1 knapsack problem



Exercise 2
Simple 2D Maze

Does the “Left Turn” rule work?
The arrow shows the direction 

you are facing

x



Exercise 2b
Simple 2D Maze

Does the “Left Turn” rule work 
now?

x



Formal Heuristics
To try to develop a more general problem solving strategy, we may think of 
solving a problem as the process of making a sequence of decisions from a set 
of candidate actions in order to reach a goal. We may define the set of 
candidate actions as:

A = {a1, …, aN}

Example: If you try to exit a 2D maze, your options at each grid point might be:

A: {Down, Right, Up, Left}



Formal Heuristics
Under this problem-solving approach, solving a problem is performing a 
sequence of “searches” for the next best candidate action. 

Next best is : ak = getNext(A);

Finally, the result is the sequence: S: {s1, …, sM} where each solution step si is 
one action from A. For example: S: {a7, a4, a2, a8}. Note that the solution S 
might have more or less actions than the total set of possible actions A.

Example Maze Solution: S: {Up, Up, Right, Right, Down, Left, Left}, Or more 
simply:  S: {U, U, R, R, D, L, L}.

We define a partial solution Ŝ: as a sequence that has not yet reached the goal



Exercise 3
Simple 2D Maze

Which is the correct sequence?

x

start



Formal Heuristics
In general, these decisions have an attached cost and/or an inherent value. 

e.g. In the 0/1 Knapsack problem, ak is really a combination of {vk, wk}

One usually wants to either minimize the cost or maximize the value. This 
depends how you phrase the problem. We’ll use the cost version but the 
following applies also to maximizing value.

Formally, we can use a function f(Ŝ) to estimate the cost of going from the 
current state of the partial solution Ŝ to the final state or goal.

 



Ideal f(i):
f(i): Actual minimum distance 

to the goal x

f(i) is given by an oracle

6 7 8 9
5 12 11 10
4 3 x 1
5 2 1 2
6 5 4 3

● currently at [2,0] (the circle);
● current partial solution: Ŝ:{D,D};
● f(Ŝ) estimate to reach x is 4.
● f(Ŝ ∪ D) = 5
● f(Ŝ ∪ R) = 3

start



Formal Heuristics
The problem arises when we don’t have enough information to compute the 
ideal f(Ŝ) for each partial solution Ŝ.

In these cases, we need to come up with one or many rules to make a 
decision.

A typical policy is called: the Greedy Method. The idea is:

1. Design a decent approximation of f(Ŝ) 
2. Sort the set of allowable next actions according to f(Ŝ) 
3. Pick the best one (minimum cost or maximum value).

 



Possible Estimate 
f(i):

f(i): Manhattan distance to x

f(i) is like the hint in the 
hot/cold searching game

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,0] (the circle);
● current partial solution: Ŝ:{D,D};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ D) = 3 
● f(Ŝ ∪ R) = 1⇽ Next Greedy Choice



The greedy method is an excellent option for beginners. 

However, it has a weakness: The sequence of “top picks” can arrive at a partial 
solution that looks good if you don’t look to hard, but is actually not good at 
all. We call these points:

Local minima: a state with lower cost than all of its close neighbors but not all 
possible states.

Local maxima: a state with greater value than all of its close neighbors but not 
all possible states.

Problems with the Greedy Method



Example: Minimization Problem In 1 Dimension

Global Minimum

Current 
state

Possible States of a Partial Solution

To
ta

l c
os

t o
f a

 S
ta

te

Local Minimum

Search Direction L Search Direction R

If we start at the initial state and build Ŝ, the next decisions from A:{L, R} will seek to 
minimize Ŝ until they reach the Local Minimum, where Ŝ will get “trapped” since all 
following options are worse.

Initial 
state



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

For this problem instance, the 
greedy choices lead to a bad 

state.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,0] (the circle);
● current partial solution: Ŝ:{D,D};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ D) = 3 
● f(Ŝ ∪ R) = 1 ⇽ Next Greedy Choice



One Possible Solution: Escape!
The Greedy method is sometimes complemented with additional heuristics to 
escape the local minima. 

One such option is to keep track of intermediate states where you “could have 
chosen another path of similar cost”.

Another is to tag states that lead to local minima in order to avoid them when 
searching an alternative path.



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [0,0] (the circle);
● partial solution: Ŝ:{Ø};
● f(Ŝ) estimate to reach x is 4.
● f(Ŝ ∪ D) = 3 ⇽ Next Greedy Choice
● f(Ŝ ∪ R) = 3  ⇽ Tag Alternative



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [1,0] (the circle);
● partial solution: Ŝ:{D};
● f(Ŝ) estimate to reach x is 3.
● f(Ŝ ∪ D) = 2⇽ Next Greedy Choice
● f(Ŝ ∪ R) = 2  ⇽ Tag Alternative



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,0] (the circle);
● partial solution: Ŝ:{D,D};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ D) = 3 
● f(Ŝ ∪ R) = 1 ⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,1] (the circle);
● partial solution: Ŝ:{D,D,R};
● f(Ŝ) estimate to reach x is 1.
● f(Ŝ ∪ U) = 2  ⇽ worse! 
● f(Ŝ ∪ L) = 2   ⇽ worse! 



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● Return to  [1,0] (the circle);
● Use previous Ŝ:{D,D,R}; to:
● update partial solution: Ŝ:{D};
● f(Ŝ) estimate to reach x is 3.
● f(Ŝ ∪ R) = 2⇽ Next Greedy Choice 



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

There are many little details to decide 
like here: Backtrack or Advance

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [1,1] (the circle);
● partial solution: Ŝ:{D,R};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ D) = 1  ⇽ Tagged as Bad
● f(Ŝ ∪ U) = 3 ⇽Seen Before ***



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● Return to [0,0] (the circle);
● Use previous Ŝ:{D,R}; to:
● update partial solution: Ŝ:{Ø};
● f(Ŝ) estimate to reach x is 4.
● f(Ŝ ∪ R) = 3 ⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [0,1] (the circle);
● partial solution: Ŝ:{R};
● f(Ŝ) estimate to reach x is 3.
● f(Ŝ ∪ D) = 2  ⇽ Tagged as Bad
● f(Ŝ ∪ R) = 2⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [0,2] (the circle);
● partial solution: Ŝ:{R,R};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ R) = 3 ⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [0,3] (the circle);
● partial solution: Ŝ:{R,R,R};
● f(Ŝ) estimate to reach x is 3.
● f(Ŝ ∪ D) = 2 ⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [1,3] (the circle);
● partial solution: Ŝ:{R,R,R,D};
● f(Ŝ) estimate to reach x is 2.
● f(Ŝ ∪ D) = 1⇽ Next Greedy Choice
● f(Ŝ ∪ L) = 1  ⇽ Tag Alternative



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,3] (the circle);
● partial solution: Ŝ:{R,R,R,D,D};
● f(Ŝ) estimate to reach x is 1.
● f(Ŝ ∪ D) = 2  
● f(Ŝ ∪ L) = 1 ⇽ Next Greedy Choice



Greedy Method, 
Minimum f(i):

f(i): Manhattan distance to x

In the path to x, we might keep 
track of possible “alternatives”.

4 3 2 3
3 2 1 2
2 1 x 1
3 2 1 2
4 3 2 3

● currently at [2,3] (the circle);
● partial solution: Ŝ:{R,R,R,D,D,L};
● f(S) to reach x is 0.



Another example of Greedy pitfall
You run the “Vectors and Algorithms store”, where you sell vectors for 7 cents 
and Algorithms for 50 cents.

A customer buys 1 Algorithm and 2 vectors (64 cents) and gives you 1 dollar.

You have many coins of the following denominations: A:{0.25, 0.10, 0.5, 0.01}

How can you give change in order to minimize the number of coins you give 
the customer?

What if you live in OddLand where their coins are: A:{0.25, 0.15, 0.01}



Types of Games
So far, you've seen games where we 

● try to maximize or minimize an approximate value
○ 0/1 Knapsack

● try to reach a specific state by the best possible path
○ Maze

● try to beat an opponent by reaching a final state where we win
○ Chess

What changes in the formulations?
The definition of an intermediate game state,  the heuristic 

function, and the goal or stopping conditions.



End of Part 1
Let’s Look at the Next Lab and HW5


